Hydrogen peroxide is an endothelium-dependent contracting factor in rat renal artery.

نویسندگان

  • Yu-Jing Gao
  • Robert M K W Lee
چکیده

In addition to endothelium-derived relaxing factor and hyperpolarizing factor, vascular endothelium also modulates smooth muscle tone by releasing endothelium-derived contracting factor(s) (EDCF), but the identity of EDCF remains obscure. We studied here the involvement of hydrogen peroxide (H2O2) in endothelium-dependent contraction (EDC) of rat renal artery to acetylcholine (ACh). ACh (10(-6), 10(-5), and 10(-4) M) induced a transient contraction of rat renal artery with intact endothelium in a concentration-related manner, but not in the artery with endothelium removed. In phenylephrine-precontracted renal arteries, ACh induced an endothelium-dependent relaxation response at lower concentrations (10(-8)-10(-6) M), and a relaxation followed by a contraction at higher concentrations (10(-5) M). Inhibition of nitric oxide synthase by N(omega)-nitro-L-arginine (10(-4) M) enhanced the EDC to ACh. Catalase (1000 U ml(-1)) reduced the EDC to ACh. H2O2 (10(-6), 10(-5), and 10(-4) M) induced a similar transient contraction of the renal arteries as ACh, but in an endothelium-independent manner. Inhibition of NAD(P)H oxidase and cyclooxygenase by diphenylliodonium chloride and diclofenac greatly attenuated ACh-induced EDC, while inhibition of xanthine oxidase (allopurinol) and cytochrome P450 monooxygenase (17-octadecynoic acid) did not affect the contraction. Antagonist of thromboxane A2 and prostaglandin H2 receptors (SQ 29548) and thromboxane A2 synthase inhibitor (furegrelate) attenuated the contraction to ACh and to H2O2. In isolated endothelial cells, ACh (10(-5) M) induced a transient H2O2 production detected with a fluorescence dye sensitive to H2O2 (2',7'-dichlorofluorescein diacetate). The peak concentration of H2O2 was 5.1 x 10(-4) M at 3 min and was prevented by catalase. Taken together, these results show that ACh triggers H2O2 production through NAD(P)H oxidase activation in the endothelial cells, and that ACh and H2O2 share the same signaling pathway in causing smooth muscle contraction. Therefore, H2O2 is most likely the EDCF in rat renal artery in response to ACh stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The vasodilatory action of telmisartan on isolated mesenteric artery rings from rats

Objective(s): Angiotensin Ⅱ type 1 receptor blockers (ARBs) represent one of the widely used antihypertensive agents. In addition to anti-hypertension effect, some ARBs also show other molecular effects such as activating peroxisome proliferator-activated receptor-γ and so on. Here we studied the effects of telmisartan on the rat isolated mesenteric artery rings pre-contracted by phenylephrine ...

متن کامل

The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation

Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...

متن کامل

Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion.

Oxidant-induced damage to the intima of pulmonary and systemic vessels is thought to be an important mechanism of injury in a variety of syndromes of vascular damage. Hydrogen peroxide (H2O2) is an active oxygen metabolite that may induce intimal injury by cytolytic attack or by inducing biochemical and functional alterations in the endothelial cells (EC); however, mechanisms involved in noncyt...

متن کامل

Hydrogen peroxide acts as relaxing factor in human vascular smooth muscle cells independent of map-kinase and nitric oxide.

We previously showed that hydrogen peroxide (H2O2) induced resistance artery relaxation independent of endothelium. Thus, in this study we investigated the mechanism of relaxation induced by H2O2 on human renal vascular smooth muscle cell (HVSMC). HVSMC were stimulated with H2O2 and/or angiotensin II (Ang II), proline-rich-tyrosine-kinase-2 (PYK2), ERK1/2 MAP-Kinase, and myosin light chain 20 p...

متن کامل

Intact human erythrocytes prevent hydrogen peroxide-mediated damage to isolated perfused rat lungs and cultured bovine pulmonary artery endothelial cells.

Addition of untreated or glutaraldehyde-fixed human erythrocytes decreased hydrogen peroxide (H2O2)-mediated acute edematous injury in isolated rat lungs, H2O2-induced damage to cultured bovine pulmonary artery endothelial cells, and H2O2-dependent oxidation of reduced cytochrome C in vitro. The results suggest that intact erythrocytes can scavenge H2O2, and as a result, protect the lung and po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of pharmacology

دوره 146 8  شماره 

صفحات  -

تاریخ انتشار 2005